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Role of excitation lifetime in electron transfer reactions 
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Abstract 

Within the framework of the unified theory of electron transfer reactions in solutions the influence of lifetime of excitations on kinetics and 
quantum yields of ionization and recombination was studied. The effect of the lifetime on the shape of the initial ion distribution was analyzed 
and found to be very important when ionization is diffusionally controlled. The Stern-Volmer constant was also calculated and compared 
with one obtained within the contact approximation. 0 1997 Elsevier Science S.A. 
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1. Introduction 

Photo-induced intra- and intermolecular electron transfer 
has been the subject of very extensive experimental and the- 
oretical study in recent decades because of its dominant role 
in many important photochemical processes including con- 
version and storage of Solar energy. After light-induced exci- 
tation of an electron donor (D) , an electron can be transferred 
to acceptor (A) 

D*+A+ [D+...A-] (1) 

This bimolecular reaction is widely studied as an efficient 
mechanism of energy quenching in solution [ 1,2]. 

The ion pair produced by the photoionization may either 
recombine to the ground state or separate according to the 
kinetic scheme 

[D..,A] + [D+ . ..A-] +D+ +A- (2) 

The unified theory of bimolecular ionization followed by 
geminate charge recombination and separation is now well 
developed [ 3-61. The quantitative approach to kinetics of 
such consecutive reactions is based on the position dependent 
rates of electron transfer between the reactants separated by 
distance r. Both forward and backward transfers are activated 
processes 

W,,,(r) =~~,~(r)e-“‘~~ (3) 

where the subscripts I and R stand for ionization and recom- 
bination processes correspondingly. Activation energies in 
Eq. (3) are given by the Marcus’ formula 
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where AG is the free energy of the reaction and A is the 
reorganization energy of the surroundings. In the region con- 
sidered as “normal”, AG > - A, the more exothermic reac- 
tion is the faster it proceeds. With further increase of I AG I 
into the region referred to as “inverted”, AG < -A, thereac- 
tion rate decreases owing to the Arrhenius factor in Eq. (3). 
The rate is maximal between these regions (at A G = -A), 
where the reaction is activationless. 

When the diffusion is fast and the bottleneck of the ioni- 
zation is the transfer rate, Eq. (3), the reaction is kinetically 
controlled, and it may be expected that the stationary rate 
constant k,( ~0) = ki = W,(a) u reproduces general properties 
of the ionization rate W, at the closest approach distance, (T 
(c is the volume of the contact reaction zone). Alternatively, 
at values of A Gi = A G,( a) in some region around - A(w) 
the transfer rate is large enough, and the reaction rate can be 
determined by the rate of bringing about the reactants, so that 
the reaction becomes diffusionally controlled. The measured 
rate is given then by diffusional rate constant k,=4n-RQD, 
where D is the diffusion constant and R, is the effective 
ionization radius which depends on A Gi rather weakly [ 71. 

The total quantum yield of free ions 4 is determined by 
the ionization yield and the relative recombination and sep- 
aration efficiencies. The last two quantities are affected by 
both the initial ion distribution and the diffusion rate. One 
has to note, however, that, while in course of the bimolecular 
ionization diffusion supports the reaction bringing about the 
reactants, in geminate recombination it also constitutes a 
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competitive channel, the separation of ions shown by the right 
arrow in the kinetic scheme of Eq. (2). 

In this work we study the effect of the lifetime of excita- 
tions on the reaction kinetics and quantum yield. Our consid- 
eration is based on numerical solution of the encounter theory 
equations which take account of remote electron transfer and 
provide a proper binary (low concentration of reactants) 
description of photo-induced ionization accompanied by 
recombination. We show that the effect at hand is two-fold. 
Decrease of the lifetime makes the excitation decay channel 
more effective compared with ionization, which obviously 
results in a decrease of ionization and consequently of total 
quantum yields. Within this context we also study the Stem- 
Volmer constant which characterizes the efficiency of exci- 
tation quenching. On the other hand, we show that, when the 
lifetime becomes shorter, the initial ion distributions shrink 
towards the contact, which can result in a decrease of the 
separation quantum yield. The latter effect is pronounced 
when a significant part of the distribution is outside therecom- 
bination layer. The decrease of lifetime shifts the distribution 
closer or even inside the recombination layer and the sepa- 
ration quantum yield can be suppressed by orders of 
magnitude. 

2. Description of ionization and recombination 
processes 

2. I. Electron transfer rates 

Within the framework of conventional non-adiabatic per- 
turbation theory of electron transfer with a single assisting 
mode [ 81 the pre-exponents in Eq. (3) are given by 

(4) 

where Vi,, are off-diagonal matrix elements of exchange inter- 
actions at the closest approach distances for ionization and 
recombination. For simplicity, in Eq. (4) we neglect the 
difference between the closest approach distances and spatial 
decrements, as well as matrix elements of the interactions, 
assuming the same g, Land Vfor both forward and backward 
electron transfer. For the numerical calculation we assume 
throughout this paper u = 5 A, L= 1 A and W,,J a) = 
lo3 nss’. 

The r-dependence of the rates in Eqs. (3) and (4) is rather 
complicated since both A G and A depend on spatial coordi- 
nates. Indeed, for ionization we have 

AG,(r)=AG,(m)-Ts=AG,+$ 
r CT 

where r, = e2/ekT is the Onsager radius for Coulomb attrac- 
tion between ions, E is the static dielectric constant, and 
A Gi is the ionization free energy at the contact distance. We 
assume the values characteristic for water, E = 81, r, = 7 A. 

The free energy of the recombination process is determined 
by conservation law 

-AGR-AGr=g,, (6) 

where g0 is the excitation energy of the donor. 
The reorganization energy of the solvent is expressed as 

A(r) =A, 
( 1 
2-a 

r 
r0 - rc A, = kT-- 

u 

(7) 

where A, = A( a) is the contact reorganization energy (55kT 
with the parameters chosen), r,, = e2/q,kT is determined by 
the optical dielectric constant co= 2. In the following we 
restrict our consideration to outer-sphere reactions in polar 
solvents where Eq. (7) provides the main contribution to the 
total reorganization energy so that the reorganization energy 
of inner-sphere modes can be neglected. 

A very important feature of the rates in Eqs. (3) and (4) 
is that only in normal region A G,,, > - A, they show up the 
quasi-exponential behavior. In the inverted region, A Gi,, < 
- A,, transfer rate (3) is not a monotonous function of coor- 
dinate and its maximum is shifted away from the contact [ 81. 

2.2. UniJied theory 

The ionization of Eq. ( 1) which provides the initial con- 
ditions for subsequent competitive recombination and sepa- 
ration is described by the differential non-Markovian 
encounter theory (ET) [ IO]. This theory accounts for sto- 
chastic wandering of the reactants, occasionally entering the 
reaction zone. The total number of excited donors within ET 
obeys binary kinetic equation 

g(t) = -k,(t)cN(t) -N (8, 
70 

where rD is the lifetime of excitation, c is the concentration 
of acceptors, k,(t) is non-stationary ionization rate. Since 
ionization occurs with the rate of Eq. (3) at any distance, the 
time-dependent rate constant is defined as 

k,=4njW,(r)n(r,t)? dr (9) 

where n( r,t) is a pair distribution function of reactants. The 
encounter diffusion of neutral reactants with the diffusion 
coefficient D is described by equation 

$(r,t) = - W[(r)n(r,t) +Dar’-%(r.t) 
2 ar au 

(10) 

with the constant initial and the reflecting boundary 
conditions 

antr,t) 
n(r,O) = 1 - =o 

&- s3 
(11) 

If created ions are immobile and do not recombine, the 
kinetic equation for the distribution function of ion pairs, 
m( r,t), is simply 
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Fig. 1. Ionization yield @ (dashed line), charge separation yield (p (dot-dashed line) and free ion yield += I/P @ (solid line); z(,= 3&, To= 1 ns, 
D= lO~‘cm’s~‘, W,(u) = 10’nsC’. 

Under these conditions the stationary distribution of ions is 
?A 

m,,(r) =m(r,a) = W,(r) n(r,t)N(t) dt (13) 
0 

and the quantum yield of ionization is given by 
cc 

@=4rrc mo( r)? dr 
v 

(14) 

It has been shown [ 51 that in the general case of competing 
ionization and recombination processes the total quantum 
yield of free charges ( see example Fig. 1) is 

+=*4 (15) 

where I+!J is the quantum yield of ionization process defined 
in Eq. ( 14)) and the separation quantum yield is given by 

m 

(16) 
LT 

Here, the normalized initial distribution of ions is 

and position-dependent yield cp( I) which characterizes sep- 
aration of a geminate pair created at distance r, obeys the 
equation [ 91 

W,(r)p(r) =!$exd’)$2exp(y)J$r) 

cp(“) = 1 (18) 

Such a straightforward calculation of + and hence the total 
yield C$ is equivalent to more general scheme, involving solu- 
tion of coupled system of equations for both n( r,t), N(r) and 
the distribution function of ions 

+~~exp(~)~exp(+)m(r,i) (19) 

with zero initial and reflecting boundary conditions 

m(r,O) =0 qexp(3)m(r,t) irzc,=O 
dr (20) 

With the help of this solution one can determine the total 
amount of ion pairs 

r 

P(t) =4~rc 
I 

m(r,t)? dr 
CT 

(21) 

and the total separation quantum yield is given then by += 
P(a). It is the latter scheme of calculation of @ that the 
numerical package at our disposal utilizes. 

3. The role of the excitation lifetime 

In the previous theoretical studies, the excitation lifetime 
rD in Eq. (8) was usually assumed to be infinite. However, 
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Fig. 2. Free energy dependence of ionization yield &at different TV. 

in reality it strongly affects kinetics and quantum yields of 
ionization and recombination. At 7b = 03 the quantum yield 
of ionization += 1, since ionization, regardless of its rate. is 
the only possible reaction channel. At finite r,, the existence 
of the competitive quenching channel results not only in 
decrease of @, but also in changes of a shape of initial ion 
distribution mo( r) ; the latter in turn strongly affects the 
charge separation yield. 

The evolution of ionization yield r+!t with decrease of r,, is 
presented in Fig. 2. The higher the activation energy is, the 
more suppression of ionization is pronounced, since the reac- 
tion rate of Eq. (3) is exponentially small for large U and the 
luminescence channel becomes relatively more efficient. It is 
useful to consider the complementary quantity, the quantum 
yield of luminescence, 

(22) 

In the limit of low concentration of acceptors the Stert- 
Volmer law 

(23) 

is approximately valid, where k, is the quenching constant 
(concentration independent). Using the relation between 77 
and @, the quenching constant can be calculated as 

(24) 

On the other hand, if the electron transfer reaction is assumed 
to proceed at the closest approach distance (contact approx- 
imation) then analytical expression for the quenching con- 
stant can be obtained [ 111 

k, = 
hk, k,, 

b+ 
k, = 1 + 6 

(2.5) 

1+-JT,/7, 1+&7g 

where k. = 47rjWi( r)r? dr= k,(O) is the kinetic rate constant, 
k, =4mrD is the diffusional rate constant within contact 
approximation, and encounter time is rd = a2/D (i.e. the lat- 
ter is proportional to a solvent viscosity). Dimensionless 
times Td, ?,, are in units of r,,=4m?/ko. The quenching 
constant of Eq. (25) is plotted versus Fd = 1 /D in Fig. 3 for 
several values of r,,. At r,, = m, k, coincides with the station- 
ary rate constant of contact approximation ki = k,( x) = 
k,,/ ( 1 + Fd). As soon as r,, +C 7Ci the viscosity dependence of 
k, is more smooth, k, = k,l ( I + J?,?,) . 

In Fig. 4 we compare the analytical curves for contact 
quenching with the results of our calculations for remote 
electron transfer at two values of 7-b = 0.1, 100 ns (at 
- LG, = OSSh,, r,,=O.23 ns). It is clear that in the static 
limit (TV+ x) Eq. (25) is inapplicable. since k, tends to 
zero, while in the case of remote electron transfer the quench- 
ing constant is finite in this limit. However, one can see from 
the Fig. 4 that at small T, the contact approximation fails to 
predict the value of quenching constant even when diffusion 
is rather fast, fd N 1. The reason is that at small rb the quench- 
ing constant is completely determined by initial, non-station- 
ary stage of ionization which is more sensible to whether the 
quenching is contact or remote. 
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Fig. 3. Viscosity dependence of quenching constant k, within contact approximation at different excitation lifetimes ( rC,/ T,, = k,,lk, - 77). 
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Fig. 4. The quenching constant at 7. = 0.1 ns within contact approximation (solid line) and within encounter theory (open circles) The same for 7. = 100 ns 
(dashed line, contact approximation; crosses, encounter theory). ?,=0.23 ns. 

Let us now consider the r,, dependence of ion distribution 
mo( r) (Fig. 5)) which serves as the initial condition for gem- 
inate recombination. If ionization is kinetically controlled, 
then the pair distribution function n( r,t) remains uniform at 
any time and mo( r) from Eq. ( 13) reproduces the shape of 
the position-dependent ionization rate W,(v) . The situation 
is completely different if the ionization is diffusionally con- 
trolled. At large r,, the contribution of initial non-stationary 
stage of the reaction is negligible. In the course of the reaction 

the population of excitations in the vicinity of an acceptor 
decreases fast, approaching stationary distribution n,(r) 
which is almost zero in the reaction sphere of radius R,. The 
ions are created in a thin layer adjusted to R,, where the 
maximum of m,(r) is hence pinned. With decrease of the 
excitation lifetime, the contribution of the initial stage 
becomes more important, because a larger share of excitations 
decay before the stationary reaction regime is established. At 
short enough mu the distribution n( r,t) has no time to deviate 
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essentially from the uniform one and then the distribution of 
products m( r,t) reproduces the shape of W,(r) . As the result 
the maximum of mo( r) either disappears (in normal region, 
AGi > - A,) or coincides with that of W,(r) (in inverted 
region, A Gi < - h,) _ 

The effect of decrease of excitation lifetime on the sepa- 
ration quantum yield (p is illustrated in Fig. 6 for excitation 

energies g,, = A,, 2A,, and 3h,. Each plot is accompanied by 
one illustrating A Gi dependence of 

x= l/4- 1 (26) 

Within the oversimplified “exponential model” this quantity 
follows the parabolic dependence of In I+‘,( a) on A G,, but 
in reality this is true only for kinetically controlled recombi- 
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Fig. 6. Charge separation yield (p and X = 1 /(p - I versus ionization free energy for K,, = A,, 8, = 2h, and %,, = 3h, at TV = 100 ns (solid line), 7. = 1 ns (dashed 
line) and 7D = 0.1 (dot-dashed line). Diffusion coefficient D = IO-’ cm* s ‘. 

nation [ 51. The effect of finite lifetime should be expected to fast excitation decay is essential only in case when ions 
only in some range of - AGi near h,, in which ionization is are generated outside the recombination layer and their deliv- 
diffusionally controlled and hence the location of ion creation ery to the latter is diffusionally controlled. Ionization and 
layer is r,, dependent. If ions are created inside the recom- recombination are the fastest at A G, = - h, and AC, = - h, 
bination layer, then the shape of ma(u) does not affect the (i.e. AC,=+gO) correspondingly. Hence the effect of 
charge separation yield [ 121. The deformation of m,,( r) due short excitation decay time should be looked for in a vicinity 
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of - AGi = - AG,=8’,,/2, when the electron transfer is 
expected to be diffusionally controlled. This conclusion is 
fully confirmed by the results presented in Fig. 6: the most 
significant deviations are always near the point - AGi = 
8’,/2. 

One can see that with the parameters chosen, the effect is 
weak at X0 = h,. The reason is that ionization becomes dif- 
fusionally controlled when - h Gi exceeds 0.4A,, but the 
recombination in this range of A G, switches to kinetic control. 
Alternatively, at Z. = 2h ionization and recombination are 
simultaneously diffusionally controlled in the same range of 
A Gi and the separation yield is strongly suppressed by short- 
ening the excitation lifetime. At W, = 3h the recombination 
becomes noticeable when ionization is already under diffu- 
sional control, at - A Gi > h,. The effect develops fast with 
further increase of lAGi I, because the recombination 
becomes faster and switches to diffusional control. When 
- A Gi exceeds 2h, the ionization becomes kinetically con- 
trolled and the effect disappears, in spite of rather fast 
recombination. 

4. Summary 

Within the framework of encounter theory we analyzed 
the effect of finite lifetime of excitations on the kinetics and 
quantum yields of bimolecular ionization followed by gem- 
inate recombination. We found that the effect is two-fold. In 
addition to obvious suppression of ionization quantum yield 
with decrease of TP, we observed considerable changes in 
initial distributions of ions, which in turn can strongly affect 
the separation quantum yield. If ionization is kinetically con- 
trolled, then the effect is absent since m,(r) is pinned on 
W,(Y) regardless of the value of rb. However, if ionization 
is diffusionally controlled then with decrease of rD the initial 

ion distribution shifts towards the W,(r) contour, strongly 
affecting the charge separation yield, provided the recombi- 
nation is also diffusionally controlled. The suppression can 
amount to orders of magnitude if diffusional control is well 
pronounced for both ionization and recombination. 
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